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Multi-level Context Gating of Embedded Collective
Knowledge for Medical Image Segmentation

Maryam Asadi-Aghbolaghi, Reza Azad, Mahmood Fathy, and Sergio Escalera

Abstract—Medical image segmentation has been very challeng-
ing due to the large variation of anatomy across different cases.
Recent advances in deep learning frameworks have exhibited
faster and more accurate performance in image segmentation.
Among the existing networks, U-Net has been successfully applied
on medical image segmentation. In this paper, we propose an
extension of U-Net for medical image segmentation, in which
we take full advantages of U-Net, Squeeze and Excitation (SE)
block, bi-directional ConvLSTM (BConvLSTM), and the mecha-
nism of dense convolutions. (I) We improve the segmentation
performance by utilizing SE modules within the U-Net, with
a minor effect on model complexity. These blocks adaptively
recalibrate the channel-wise feature responses by utilizing a
self-gating mechanism of the global information embedding of
the feature maps. (II) To strengthen feature propagation and
encourage feature reuse, we use densely connected convolutions
in the last convolutional layer of the encoding path. (III) Instead
of a simple concatenation in the skip connection of U-Net, we
employ BConvLSTM in all levels of the network to combine the
feature maps extracted from the corresponding encoding path
and the previous decoding up-convolutional layer in a non-linear
way. The proposed model is evaluated on six datasets DRIVE,
ISIC 2017 and 2018, lung segmentation, PH2, and cell nuclei
segmentation, achieving state-of-the-art performance.

Index Terms—BConvLSTM, Dense Convolution, Medical Im-
age Segmentation, Squeeze and Excitation, U-Net .

I. INTRODUCTION

MEDICAL images play a key role in medical treatment
and diagnosis. The goal of Computer-Aided Diagnosis

(CAD) systems is providing doctors with more precise inter-
pretation of medical images to follow-up of many diseases and
have better treatment of a large number of patients. Moreover,
accurate and reliable processing of medical images results in
reducing the time, cost, and error of human-based processing.
A critical step in numerous medical imaging studies is image
segmentation. Medical image segmentation is the process of
partitioning an image into multiple meaningful regions. Due
to the complex geometry and inherent noise value of medical
images, segmentation of these images is difficult. Interest in
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Fig. 1. Different applications of medical image segmentation.

medical image segmentation has grown considerably in the
last few years. This is due in part to the large number of
application domains, like segmentation of blood vessel, skin
cancer, lung, and cell nuclei (Figure 1).

For instance, segmentation of blood vessels will help to
detect and treat many diseases that influence the blood ves-
sels. Width and curves of retinal blood vessel show some
symptoms about many diseases. Early diagnosis of many sight-
threatening diseases is vital since lots of these diseases like
glaucoma, hypertension and diabetic retinopathy cause blind-
ness among working age people. Skin lesion segmentation
helps to detect and diagnosis the skin cancer in the early stage.
One of the most deadly form of skin cancer is melanoma,
which is the result of unusual growth of melanocytes. Der-
moscopy, captured by the light magnifying device and im-
mersion fluid, is a non-invasive imaging technique providing
with a visualization of the skin surface. The detection of
melanoma in dermoscopic images by the dermatologists may
be inaccurate or subjective. If melanoma is detected in its early
stages, the five-year relative survival rate is 92% [1].

The first vital step of pulmonary image analysis is iden-
tifying the boundaries of lung from surrounding thoracic
tissue on CT images, called lung segmentation. It can also
be applied to lung cancer segmentation. Another application
of medical image segmentation is cell nuclei segmentation.
All known biological lives include a fundamental unit called
cell. By segmentation of nuclei in different situations, we can
understand the role and function of the nucleus and the DNA
contained in cell in various treatments.

Deep learning networks achieve outstanding results and use
to outperform non-deep state-of-the-art methods in medical
imaging. These networks require a large amount of data
to train and provide a good generalization behavior given
the huge number of network parameters. A critical issue in
medical image segmentation is the unavailability of large
(and annotated) datasets. In medical image segmentation, per
pixel labeling is required instead of image level label. Fully
convolutional neural network (FCN) [2] was one of the first
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deep networks applied to image segmentation.

Ronneberger et al. [3] extended this architecture to U-Net,
achieving good segmentation results leveraging the need of
a large amount of training data. Their network consists of
encoding and decoding paths. In the encoding path a large
number of feature maps with reduced dimensionality are
extracted. The decoding path is used to produce segmentation
maps (with the same size as the input) by performing up-
convolutions. Many extensions of U-Net have been proposed
so far [4]–[6]. In some of them, the extracted feature maps
in the skip connection are first fed to a processing step (e.g.
attention gates [5]) and then concatenated. The main drawback
of these networks is that the processing step is performed
individually for the two sets of feature maps, and these features
are then simply concatenated.

In this paper, we propose Multi-level Context Gating U-Net
(MCGU-Net) an extended version of the U-Net, by including
BConvLSTM [7] in the skip connection, using SE mechanism
in the decoding path, and reusing feature maps with densely
convolutions. A VGG backbone is employed in the encoding
path to make it possible to use pre-trained weights on large
datasets. The feature maps from the corresponding encoding
layer have higher resolution while the feature maps extracted
from the previous up-convolutional layer contain more seman-
tic information. Instead of a simple concatenation, combining
these two kinds of features with non-linear functions in all
levels of the network may result in more precise segmentation.
Therefore, in this paper we extend the U-Net architecture by
adding multi-level BConvLSTM in the skip connection.

Inspired by the effectiveness of the recently proposed
squeeze and excitation modules [8] on image classification,
we modify the U-Net by inserting these blocks in the de-
coding path. SE modules allow the network to recalibrate
the feature map to have more attention on useful channels
by assigning different weights to various channels of feature
maps based on to their relationship by employing a context
gating mechanism. By using global embedding information,
these modules help the network to boost informative and
meaningful features, while suppressing weak ones. Having a
sequence of convolutional layers may help the network to
learn more kinds of features; however, in many cases, the
network learns redundant features. To mitigate this problem
and enhance information flow through the network, we utilize
the idea of densely connected convolutions [9]. In the last layer
of the contracting path, convolutional blocks are connected to
all subsequent blocks in that layer via channel-wise concate-
nation. This strategy helps the method to learn a diverse set of
features based on the collective knowledge gained by previous
layers. Furthermore, we accelerate the convergence speed of
the network by employing BN after the up-convolution filters.

We evaluate the proposed MCGU-Net on four different ap-
plications retinal blood vessel segmentation (DRIVE dataset),
Skin lesion segmentation (three datasets of PH2, ISIC 2017
and 2018), lung nodule segmentation (Lung dataset), and cell
nuclei segmentation (Data Science Bowl 2018). The experi-
mental results demonstrate that the proposed network achieves

superior performance than state-of-the-art alternatives. 1

II. RELATED WORK

During the last few years, deep learning-based approaches
have outstandingly improved the performance of classical
image segmentation strategies. Based on the exploited deep
architecture, we divide these approaches into three groups.

A. Convolutional Neural Network (CNN)

Cui et al. [10] exploited CNN for automatic segmentation of
brain MRI images. The authors first divided the input images
into some patches and then utilized these patches for training
CNN. To handle an arbitrary number of modalities as the input
data, Kleesiek et al. [11] proposed a 3D CNN for brain lesion
segmentation. To process MRI data, the network consists of
four channels: non-enhanced and contrast-enhanced T1w, T2w
and FLAIR contrasts. Roth et al. [12] proposed a multi-level
deep convolutional networks for pancreas segmentation in
abdominal CT scans as a probabilistic bottom-up approach.

B. Fully Convolutional Network (FCN)

A problem of the CNN models for segmentation is that
the spatial information of the image is lost when the con-
volutional features are fed into the fc layers. To overcome
this problem the FCN was proposed [2]. This network is
trained end-to-end and pixels-to-pixels, in which all fc layers
of the CNN architecture are replaced with convolutional and
deconvolutional to keep the original spatial resolutions. Zhou
et al. [13] exploited FCN for segmentation of anatomical
structures on 3D CT images. An FCN with convolution and
de-convolution parts is trained end-to-end, performing voxel-
wise multiple-class classification to map each voxel in a CT
image to an anatomical label. Drozdzal et al. [14] proposed
very deep FCN by using short skip connections. The authors
showed that a very deep FCN with both long and short skip
connections achieved better result than the original one. Roth
et al. [15] proposed to employ 3D FCN in a cascaded fashion
for segmentation of the organs and vessels in CT images.

U-Net, [3], is one of the most popular FCNs for medical
image segmentation. It has some advantages than the other
segmentation-based networks [4]. It works well with few
training samples and the network is able to utilize the global
location and context information at the same time. Milletari
et al. [16] proposed V-Net, a 3D extension version of U-Net
to predict segmentation of a given volume at once. V-Net is
an end-to-end 3D image segmentation network based on a
volumetric (MRI volumes). 3D U-Net [17] is proposed for
processing 3D volumes instead of 2D images. In which, all 2D
operations of U-Net are replaced with their 3D counterparts.
In [18], the authors combine multiple segmentation maps that
are created at different scales. Moreover, to forward feature
maps from one stage of the network to the other one, element-
wise summation is utilized. A dual pathway 3D CNN (with
11 layers) [19] was proposed for brain lesion segmentation in
multi-modal brain MRI. In this model, input images at multiple

1Source code is available on https://github.com/rezazad68/BCDU-Net.
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scales are fed simultaneously to a FCN. Li et al. proposed
High-Res3DNet [20], which is a high-resolution, compact
convolutional network for volumetric image segmentation.

C. Recurrent Neural Network (RNN)
One of the most used neural networks for processing a

sequence is RNN, which can take into account the temporal
data using recurrent connections in hidden layers. It has been
successfully applied for modeling short- and long-temporal
sequences. These networks are able to model the global con-
texts and improve semantic segmentation.Different RNN based
deep network have been proposed for semantic segmentation.
Pinheiro et al. [21] proposed a deep network consisting of an
RNN that can take into account long range label dependencies
in the scenes while limiting the capacity of the model. Visin
et al. [22] proposed ReSeg for semantic segmentation. In that
network, the input images are processed with a pre-trained
VGG-16 model and its resulting feature maps are then fed
into one or more ReNet layers. DeepLab architecture [23]
contains a deep convolutional neural network in which all fully
connected layers are replaced by convolutional layers and then
the feature resolution is increased through atrous convolutional
layers. Alom et al. [4] proposed Recurrent Convolutional
Neural Network (RCNN) and Recurrent Residual Convolu-
tional Neural Network (R2CNN) based on U-Net models for
medical image segmentation. Gao [24] proposed an end to end
combination of FCN and RNN with long short-term memory
(LSTM) units for 4D segmentation of MRI images.

He et al. [8] introduced the Squeeze and Excitation (SE)
network for image classification which models the explicit
relationship between the channels of a feature map. In these
modules, the convolutional features are first passed through a
squeeze operation in which global average pooling is exploited
to produce channel descriptor. The output of the aggregation
is then fed to an excitation operation to generate a set of
per-channel modulation weights. These weights are utilized to
recalibrate the feature map to emphasize on useful channels.

In this paper, MCGU-Net is proposed as an extension
of U-Net, showing better performance than state-of-the-art
alternatives. The BConvLSTM is employed in the skip con-
nection to combine features from contracting and expanding
paths to learn more discriminative information. The dense
convolutions help the network to learn more diverse features.
Moreover, BN, utilized in the network, has a significant effect
on the convergence speed of the network. In addition, the
SE modules are exploited in the decoding path to extract
more useful information by considering the interdependecies
between channels of features. It is worth mentioning SE blocks
are utilized in our network in a different ways than other
approaches [25], [26]. Zhu et al. [26] employed SE residual
block in the encoding path, and Rundo et al. utilized these
blocks before the concatenation of skip connections while
these blocks are inserted in the decoding path of our network.

III. PROPOSED METHOD

Inspired by U-Net [3], BConvLSTM [7], SENet [8] and
dense convolutions [9], we propose the MCGU-Net (Figure
2). We detail all parts of the network in the next sub sections.

A. Encoding Path

The U-Net consists of a contracting path to extract hierar-
chically semantic features from the input and capture context
information. To improve the performance of the U-Net we
utilize the idea of transfer learning by exploiting a pre-trained
CNN of VGG family as the encoder [27]. To train a complex
model with a huge amount of parameters, a large dataset is
necessary. However, gathering a vast number of labeled data
is very tough. On the other hand, deep learning models are
mostly focused on a specific task. To overcome the isolated
learning paradigm, the idea of transfer learning has been
proposed, which leverage knowledge from pre-trained models
and use it to solve new problem, which may have less data.
Inspiring by this idea, we design the encoding path like the
first four layers of VGG-16 to make it possible to use pre-
trained models. The first two layers includes two convolutional
3× 3 filters followed by a 2× 2 max pooling and ReLU. The
number of convolutional filters in the third layer is three with
the same filter size followed by the same pooling and ReLU.
The number of feature maps are doubled at each step.

The original U-Net contains a sequence of convolutional
layers in the last step of encoding path. Having a sequence of
convolutional layers in a network yields the method learn dif-
ferent kinds of features. Nevertheless, the network might learn
redundant features in the successive convolutions. To mitigate
this problem, densely connected convolutions are proposed [9].
This helps the network to improve its performance by the idea
of “collective knowledge” in which the feature maps are reused
through the network. It means feature maps learned from all
previous convolutional layers are concatenated with the feature
map learned from the current layer and then are forwarded to
use as the input to the next convolution.

The idea of densely connected convolutions has some ad-
vantages over the regular one [9]. First, it helps the network to
learn a diverse set of feature maps instead of redundant ones.
Moreover, this idea improves the network’s representational
power by allowing information flow through the network.
Furthermore, dense connected convolutions can benefit from
all the produced features before it (i.e., collecting knowledge),
which prompt the network to avoid the risk of exploding
or vanishing gradients. In addition, the gradients are sent to
their respective places in the network more quickly in the
backward path. We employ this idea in the proposed net-
work. To do that, we introduce one block as two consecutive
convolutions. There are a sequence of N blocks in the last
convolutional layer of the encoding path. These blocks are
densely connected. We consider X i

e as the output of the ith

convolutional block. The input of the ith (i ∈ {1, ..., N})
convolutional block receives the concatenation of the feature
maps of all preceding convolutional blocks as its input, i.e.,[
X 1

e ,X 2
e , ...,X i−1

e

]
∈ R(i−1)Fl×Wl×Hl , and the output of the

ith block is X i
e ∈ RFl×Wl×Hl . In the remaining part of the

paper we use simply Xe instead of XN
e .

B. Decoding Path

Each step in the decoding path starts with an up-sampling
function over the output of the previous layer. To improve
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Fig. 2. MCGU-Net with bi-directional ConvLSTM in the skip connections, SE modlues in the decoding path, and densely connected convolution.

the representation power of the network, decoding path of the
original U-Net is augmented with two important modules of
SE block and BConvLSTM. SE yield the network to use global
information to selectively empathize informative features and
suppress less useful ones. This block receives the output of the
up-sampling function, which is a collection of feature maps,
and encourages the feature maps to be more informative using
a weight for each channel based on the interdependencies
between all channels. The output of the SE module is then
passed to an up-sampling function. In the standard U-Net,
the corresponding feature maps in the contracting path are
concatenated with the output of the up-sampling function. In
the proposed network, we employ BConvLSTM to combine
these two kinds of feature maps. The output of the BConvL-
STM is then fed to a set functions including two convolutional
functions, one SE module, and another convolutional filter. A
diagram illustrating the structure of the combination of these
modules in our network is shown in Figure 3.

Assume that the set of extracted feature maps from the
previous layer in decoding path is Xd ∈ RFl+1×Wl+1×Hl+1

where Fl is the number of feature maps at layer l, and
Wl ×Hl is the size of each feature map at layer l. We have
Fl+1 = 2 ∗ Fl, Wl+1 = 1

2 ∗ Wl, and Hl+1 = 1
2 ∗ Hl. For

simplicity we consider Xd ∈ R2F×W
2 ×

H
2 . As it can be seen

in Figure 3, this set of feature maps is first passed through
an up-convolutional layer in which an up-sampling function
followed by a 2×2 convolution are applied, doubling the size
of each feature map and halving the number of channels, i.e.,
producing X up

d ∈ RF×W×H . In other words, the expanding
path increases the size of the feature maps layer by layer to
reach the original size of the input image after the final layer.

1) Squeeze and Excitation Module: Capturing spatial corre-
lations between features has improved the performance of deep
networks, like Inception architectures [28] and spatial attention
[29]. However, the network produces the same attention to
the channels when creating the output feature maps. The SE
mechanism [8] is proposed to capture explicit relationship
between channels of the convolutional layers by a context gat-
ing mechanism, which results in improving the representation

Forward ConvLSTMForward ConvLSTM

Backward ConvLSTM

tanh tanh

UpC

FC FC

×
Scale

Backward ConvLSTM

Fig. 3. BConvLSTM with SE block in the decoding path of MCGU-Net.

power of the network. These modules encode feature maps by
assigning a weight for each channel (i.e. channel attention) in
the feature map.

The SE block includes two parts squeeze and excitation. The
first operation is squeeze. The input feature maps to SE block
are aggregated to generate channel descriptor by employing
global average pooling (GAP) of the whole context of chan-
nels. We have X up

d = [xup1 , xup2 , ..., xupF ], where xupf ∈ RW×H ,
as the input data to the SE block. The spatial squeeze (GAP)
is performed as

zf = Fsq(x
up
f ) =

1

H ×W

H∑
i

W∑
j

xupf (i, j) (1)

where Fsq are the spatial squeeze function, xupf (i, j) is a
spatial location of the f th channel, and H ×W is the size
of this channel. In other words, each two-dimensional feature
map is compressed by a global average pooling to produce
zf . To capture the channel-wise dependencies, the global
information embedded in the first step is then fed to the second
step, i.e., Excitation. This function must be able to learn
non-mutually-exclusive relationship and nonlinear interaction
between channels [8]. As it is illustrated in Figure 3, the
excitation step consists of two fully connected (FC) layers.
The pooled vector is first encoded to shape 1 × 1 × F

r , and
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then encoded again to shape 1× 1× F to generate excitation
vector as

s = Fex(z;W) = σ (W2δ(W1z)) (2)

where W1 ∈ RF
r ×F is the parameters of the first fc layer,

RF×F
r , δ is ReLU, and the σ refers to the sigmoid activation.

Moreover, r is the reduction ratio. In [8], to limit model
complexity and aid generalization, a dimensionality-reduction
layer with reduction ratio r is used in the first fc layer. In the
second fc layer a dimensionality-increasing layer is utilized
to set the dimension to the channel one of the transformation
output. The output of the SE block is generated as x̃upf =

Fscale(x
up
f , zc) = sc x

up
f . In which X̃ up

d = [x̃up1 , x̃up2 , ..., x̃upF ],
and Fscale is a channel-wise multiplication between the chan-
nel attention, the scale factor sc, and the input feature map.

2) Batch Normalization: After up-sampling, X̃ up
d goes

through a BN function and produces X̂ up
d . A problem in the

intermediate layers in training step is that the distribution
of the activations varies. This problem makes the training
process very slow since each layer in every training step has
to learn to adapt themselves to a new distribution. BN [30]
is utilized to increase the stability of a neural network, which
standardizes the inputs to a layer in the network by subtracting
the batch mean and dividing by the batch standard deviation.
BN affectedly accelerates the speed of training process of a
neural network. Moreover, in some cases the performance of
the model is improved thanks to the modest regularization
effect. More details can be found in [30].

3) Bi-Directional ConvLSTM: The output of the BN step
(X̂ up

d ∈ RFl×Wl×Hl ) is now fed to a BConvLSTM layer.
The main disadvantage of the standard LSTM is that these
networks does not take into account the spatial correlation
since these models use full connections in input-to-state and
state-to-state transitions. To solve this problem, ConvLSTM
[31] was proposed which exploited convolution operations into
input-to-state and state-to-state transitions. It consists of an
input gate it, an output gate ot, a forget gate ft, and a memory
cell Ct. Input, output and forget gates act as controlling gates
to access, update, and clear memory cell. ConvLSTM can
be formulated as follows (for convenience we remove the
subscript and superscript from the parameters):

it = σ (Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ∗ Ct−1 + bi)

ft = σ (Wxf ∗ Xt + Whf ∗ Ht−1 + Wcf ∗ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it tanh (Wxc ∗ Xt + Whc ∗ Ht−1 + bc)

ot = σ (Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bc)

Ht = ot ◦ tanh(Ct),
(3)

where ∗ and ◦ denote the convolution and Hadamard functions,
respectively. Xt is the input tensor (in our case Xe and X̂ up

d ),
Ht is the hidden sate tensor, Ct is the memory cell tensor, and,
Wx∗ and Wh∗ are 2D Convolution kernels corresponding to
the input and hidden state, respectively, and bi, bf , bo, and bc
are the bias terms.

In this network, we employ BConvLSTM [7] to encode Xe

and X̂ up
d . BConvLSTM uses two ConvLSTMs to process the

input data into two directions of forward and backward paths,

and then makes a decision for the current input by dealing
with the data dependencies in both directions. In a standard
ConvLSTM, only the dependencies of the forward direction
are processed. However, all the information in a sequence
should be fully considered, therefore, it might be effective
to take into account backward dependencies. It has been
proved that analyzing both forward and backward temporal
perspectives enhanced the predictive performance [32]. Each
of the forward and backward ConvLSTM can be considered as
a standard one. Therefore, we have two sets of parameters for
backward and forward states. The output of the BConvLSTM
is calculated as Yt = tanh

(
W
−→
H
y ∗
−→
Ht + W

←−
H
y

←−
Ht + b

)
. In

which
−→
Ht and

←−
Ht denote the hidden sate tensors for for-

ward and backward states, respectively, b is the bias term,
and Yt ∈ RFl×Wl×Hl indicates the final output considering
bidirectional spatio-temporal information. Moreover, tanh is
the hyperbolic tangent which is utilized here to combine the
output of both forward and backward states through a non-
linear way. We utilize the energy function like the original
U-Net to train the network.

IV. EXPERIMENTAL RESULT

We evaluate MCGU-Net on six datasets of: DRIVE, ISIC
2017, ISIC 2018, a lung segmentation benchmark, PH2, and
a cell nuclei segmentation dataset. The empirical results show
that the proposed method outperforms state-of-the-art alterna-
tives for all six datasets. Keras with TenserFlow backend is
utilized for implementation. We consider several performance
metrics to perform the experimental comparative, including
accuracy (AC), sensitivity (SE), specificity (SP), F1-Score,
Jaccard similarity (JS), and area under the curve (AUC). We
stop the training of the network when the validation loss
remains the same in 10 consecutive epochs.

A. DRIVE Dataset

DRIVE [33] is a dataset for blood vessel segmentation from
retina images. It includes 40 color retina images, from which
20 samples are used for training and the remaining 20 samples
for testing. The original size of images is 565 × 584 pixels.
It is clear that a dataset with this number of samples is not
sufficient for training a deep network. Therefore, we use the
same strategy as [4] for training our network. The input images
are first randomly divided into a number of patches (64×64).
In total, around 190, 000 patches are produced from 20 training
images, from which 171, 000 patches are used for training, and
the remaining 19, 000 patches are used for validation.

Some precise and promising segmentation results of the
proposed network are shown in Figure 4. Table I lists the quan-
titative results obtained by other methods and the proposed
network on DRIVE dataset. We evaluate the network with
d = 1 and d = 3 as the number of dense blocks. With d = 1
we have one convolutional block without any dense connection
in that layer. With d = 3 we have three convolutional blocks
and two dense connections in that layer. It is shown that the
MCGU-Net (with both d = 1 and d = 3) outperforms w.r.t. the
state-of-the-art alternatives for most of the evaluation metrics.
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Fig. 4. Segmentation result of MCGU-Net on DRIVE.
TABLE I

PERFORMANCE COMPARISON ON DRIVE DATASET.

Methods F1 SE SP AC AUC
U-net [3] 0.8142 0.7537 0.9820 0.9531 0.9755

Deep Model [34] - 0.7763 0.9768 0.9495 0.9720
Att U-net [5] 0.8155 0.7751 0.9816 0.9556 0.9782

RU-net [4] 0.8149 0.7726 0.9820 0.9553 0.9779
R2U-Net [4] 0.8171 0.7792 0.9813 0.9556 0.9782

MCGU-Net (d=1) 0.8222 0.8012 0.9784 0.9559 0.9788
MCGU-Net (d=3) 0.8224 0.8007 0.9786 0.9560 0.9789

Moreover, it can be seen that the network with d = 3 works
better than d = 3. It is worth mentioning that for this dataset,
we achieved better result by training the network from scratch
rather than using pre-trained weights.

To ensure the proper convergence of the proposed network,
the training and validation accuracy for DRIVE dataset is
shown in Figure 5 (a). It is shown that the network converges
very fast, i.e., after the 30th epoch. We also can see that
in the first 15 epochs the validation accuracy is larger than
the training one. This fact is mostly because of the small
size of dataset since we use a small set of images as the
validation set. Moreover, it might be related to the fact that
we evaluate the validation set at the end of epoch. To show
the overall performance of the MCGU-Net on DRIVE dataset,
ROC curves is shown in Figure 6 (a). ROC is the plot of the
true positive rate (TPR) against the false positive rate (FPR).

B. ISIC 2017 Dataset

The ISIC 2017 dataset [35] is taken from the Kaggle
competition. We evaluate the proposed method on the provided
data for skin lesion segmentation. This dataset provides 2000
skin lesion images as a training set with masks (containing
cancer or non-cancer lesions) for segmentation. We use 1250
samples for training, 150 samples as validation data, and the
other 600 samples for test. The original size of each sample
is 576×767. We resize images to 256×256. For this dataset,
we train the network with pre-trained weights on imageNet.
Since the input data is RGB images, the pre-trained weights
are good initialization for the network.

Figure 7(a) shows some segmentation results of the pro-
posed network on ISIC 2017. In Table II, the results of the
MCGU-Net on this dataset are compared with the state-of-
the-art approaches. It can be seen that MCGU-Net with both
d = 1 and d = 3 achieves better results (except sensitivity)

(a) DRIVE, (b) ISIC 2017,

(c) ISIC 2018, (d) Lung Segmentation,

(e) PH2, (f) Cell Nuclei Dataset
Fig. 5. Training and validation accuracy of MCGU-Net for six datasets.

(a) DRIVE, (b) ISIC 2017,

(c) ISIC 2018, (d) Lung Segmentation,

(e) PH2, (f) Cell Nuclei Dataset
Fig. 6. ROC diagrams of the proposed MCGU-Net for six dataset.

than the other approaches. Moreover, the result of MCGU-Net
with three dense blocks is a bit higher than with one dense
block. The training and validation accuracy of the proposed
network for this dataset is shown in Figure 5 (b). The network
converges very fast for this data (after the 30th epoch). To
show the overall performance of the MCGU-Net on ISIC 2017
dataset, the ROC curves are shown in Figure 6 (b).

C. ISIC 2018 Dataset

This dataset [36] was published by the International Skin
Imaging Collaboration (ISIC) as a large-scale dataset of der-
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TABLE II
PERFORMANCE COMPARISON ON ISIC 2017 DATASET.

Methods F1 SE SP AC JS
U-net [3] 0.8682 0.9479 0.9263 0.9314 0.9314

Melanoma det. [35] - - - o.9340 -
Lesion Analysis [37] - 0.8250 0.9750 0.9340 -

R2U-net [4] 0.8920 0.9414 0.9425 0.9424 0.9421
MCGU-Net (d=1) 0.8871 0.8305 0.9888 0.9555 0.9555
MCGU-Net (d=3) 0.8927 0.8502 0.9855 0.9570 0.9570

TABLE III
PERFORMANCE COMPARISON ON ISIC 2018 DATASET.

Methods F1 SE SP AC PC JS
U-net [3] 0.647 0.708 0.964 0.890 0.779 0.549

Att U-net [5] 0.665 0.717 0.967 0.897 0.787 0.566
R2U-net [4] 0.679 0.792 0.928 0.880 0.741 0.581

Att R2U-Net [4] 0.691 0.726 0.971 0.904 0.822 0.592
MCGU-Net (d=1) 0.889 0.845 0.984 0.952 0.938 0.952
MCGU-Net (d=3) 0.895 0.848 0.986 0.955 0.947 0.955

moscopy images in 2018. It includes 2594 images where like
previous approaches [4], we used 1815 images for training,
259 for validation and 520 for testing. The original size of each
sample is 2016× 3024. We resize images to 256× 256. The
training data consists of the original images and corresponding
ground truth annotations (containing cancer or non-cancer
lesions). Like the ISIC 2017 dataset, the proposed network
works better with pre-trained weights. For qualitative analysis,
Figure 7(b) shows some example outputs of the proposed
MCGU-Net on ISIC 2018. Table III lists the quantitative
results obtained by different methods and the proposed net-
work on this dataset. A large improvement is achieved by the
MCGU-Net (with both d = 1 and d = 3) w.r.t. state-of-the-
art alternatives for all of the evaluation metrics. It is clear
that the network with d = 3 works better than the one with
d = 1. It is worth mentioning that there was a challenge on
ISIC dataset and the best result achieved by the participants
was JS = 0.802. Compare to this result, there is a good gap
between the JS achieved by the MCGU-Net (0.955) and the
best result of the ISIC challenge.

The training and validation accuracy of the proposed net-
work for ISIC dataset is shown in Figure 5 (c). The con-
vergence speed of the network for ISIC dataset is fast (after
40 epochs). The validation accuracy over the training process
is variable. The reason behind this fact is that the validation
set contains some images totally different from the ones in
training set, therefore, during the first learning iterations the
model has some problems about segmenting those images.
To show the overall performance of the MCGU-Net on ISIC
dataset, the ROC curves are shown in Figure 6 (c).
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(a) ISIC 2017, (b) ISIC 2018, (c) PH2

Fig. 7. Segmentation result of MCGU-Net on three datasets.

TABLE IV
PERFORMANCE COMPARISON ON LUNG DATASET.

Methods F1 SE SP AC JS
U-net [3] 0.9658 0.9696 0.9872 0.9872 0.9858

RU-net [4] 0.9638 0.9734 0.9866 0.9836 0.9836
R2U-Net [4] 0.9832 0.9944 0.9832 0.9918 0.9918

MCGU-Net (d=1) 0.9889 0.9901 0.9979 0.9967 0.9967
MCGU-Net (d=3) 0.9904 0.9910 0.9982 0.9972 0.9972
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Fig. 8. Segmentation result of MCGU-Net on Lung dataset.

D. Lung Segmentation Dataset

A lung segmentation dataset is introduced in the Lung
Nodule Analysis (LUNA) competition at the Kaggle Data
Science Bowl in 2017. This dataset consists of 2D and 3D
CT images with respective label images for lung segmentation
[38]. We use 70% of the data as the train set and the remaining
30% as the test set. The size of each image is 512× 512. For
this dataset, the MCGU-Net works better with training from
scratch since the input data is entirely different from images
in ImageNet dataset. Since the lung region in CT images have
almost the same Hausdorff value with non-object of interests
such as bone and air, it is worth to learn lung region by
learning its surrounding tissues. To do that first we extract the
surrounding region by applying algorithm 1 and then make a
new mask for the training sets. We train the model on these
new masks and on the testing phase,and estimate the lung
region as a region inside the estimated surrounding tissues.

Figure 8 shows some segmentation outputs of the proposed
network for lung dataset. The quantitative results of the
proposed MCGU-Net is compared with other methods in Table
IV. It is clear that the MCGU-Net (with both d = 1 and d = 3)
outperforms the other methods. Moreover, the network with
dense connections works better. The training and validation
accuracy for this dataset is shown in Figure 5 (d). To show
the overall performance of the network on this dataset, ROC
curves is shown in Figure 6 (d).

E. PH2 Dataset

The PH2 dataset [39] is a a dermoscopic image database
proposed for segmentation and classification. It contains a total
number of 200 melanocytic lesions, including 80 common
nevi, 80 atypical nevi, and 40 melanomas. The manual seg-
mentations of the skin lesions are availablee. Each input image
is a 8-bit RGB color images with a resolution of 768 × 560
pixels. There are not a pre-defined test and train sets for this
dataset. We follow the experimental setting used in [40]. We
randomly split the dataset into two sets of 100 images, and
then use one set as the test data, 80% of the other set for
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Algorithm 1 Pre-processing over lung dataset.
1: Input = X and GT Mask
Min range = −512
Max range = +512

2: Output = Surrounding Mask
3: X(X > Max range) =Max range
X(X < Min range) =Min range
{Remove bones and vessels}

4: X = Norm(X) {Normalize X}
5: X = image2binary(X) {Convert to binary}
6: X = X ∪GT Mask
7: X =Morphology(X) {Remove noise}
8: Surrounding Mask = X −GT Mask

TABLE V
PERFORMANCE COMPARISON ON PH2 DATASET.

Methods DIC SE SP AC JS
FCN [41] 0.8903 0.9030 0.9402 0.9282 0.8022
U-net [3] 0.8761 0.8163 0.9776 0.9255 0.7795

SegNet [42] 0.8936 0.8653 0.9661 0.9336 0.8077
FrCN [43] 0.9177 0.9372 0.9565 0.9508 0.8479

MCGU-Net (d=1) 0.9762 0.8727 0.9925 0.9536 0.9536
MCGU-Net (d=3) 0.9763 0.8322 0.9714 0.9537 0.9537

the train, and the remained data for the validation. Since the
number of data is not enough for training the network, we
exploit the learnt weights of ISIC 2017 as the pre-trained
model (like [40]) and then finetune the network with train
data.

Some segmentation outputs of the proposed network for
PH2 dataset are depicted in Figure 7(c). In Table V, the results
of the proposed network are compared with other state-of-the-
art approaches. We can see the MCGU-Net results in better
performance than other methods. The network has almost the
same performance for both d = 1 and d = 3. The reason
behind this fact is the small size of training data since the
network with d = 1 contains fewer parameters for learning.
The training and validation accuracy for this dataset is shown
in Figure 5 (e). The network converges very fast (20th epoch)
which might be related to the small size of data. The ROC
curve is shown in Figure 6 (e).

F. Cell Nuclei Dataset

We evaluate the proposed network on the dataset from 2018
Kaggle Data Science Bowl 2018 [44]. This data is captured
with various situations, like different cell type, illumination
status, and image size. Moreover, this dataset contains smaller
regions inside images for segmentation for which we want
to evaluate the performance of the MCGU-Net. It includes a
total number of 670 images. We randomly split the data into
70% training, 10% validation, and 20% test data sets. Figure
9 shows some segmentation outputs of MCGU-Net. In Table
VI, the performance of the proposed method is compared with
other approaches. We can see there is a high gap between the
results of the MCGU-Net and other methods. The network
works better with d = 3 for this data. The training and
validation accuracy for this dataset is shown in Figure 5 (f).
Since the validation and training data are taken from the same
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Fig. 9. Segmentation result of MCGU-Net on cell nuclei Dataset.
TABLE VI

PERFORMANCE COMPARISON ON CELL NUCLEI DATASET.

Methods F1 DIC AC JS
U-net [3] 0.8994 0.9077 0.9604 0.8310

Att U-Net [5] 0.8899 0.8879 0.9672 0.7984
FocusNet [45] 0.8998 0.8996 0.9697 0.8176

MCGU-Net (d=1) 0.9295 0.9882 0.9766 0.9766
MCGU-Net (d=3) 0.9306 0.9884 0.9771 0.9771

set (and validation set is smaller than train set), the validation
accuracy is a bit higher than the training. The ROC curve is
shown in Figure 6 (f).

G. Discussion

The proposed network has some modifications from the
original U-Net. We evaluate each modified part of the network
to analyze its influence on the result.

We included BN after each up-convolutional layer to speed
up the network learning process. To evaluate the effect of this
function, we train the network with and without BN. BN yields
the network to converge 2 times faster. BN manages the vari-
ations among data by standardizing data through controlling
the mean and variance of distributions of inputs which results
in a small regularization and reducing generalization error.

The last convolutional layer of the encoding path is aug-
mented with dense blocks. The results for the network with 1
and 3 dense blocks are reported for all datasets. In Tables I to
VI, it can be seen that MCGU-Net with 3 dense block results
in better performance. The key idea of dense convolutions
is collecting knowledge by sharing feature maps between
blocks through direct connection between convolutional block.
Consequently, each dense block receives all preceding layers
as input, and therefore, produces more diversified and richer
features. Thus, it helps the network to increase the representa-
tional power of deeper models. We have more feature propaga-
tion both in backward and forward paths through dense blocks.
The network performs a kind of deep supervision in backward
path since dense block receives additional supervision from
loss function through shorter connections [9]. The error signal
is propagated to earlier layers more directly, hence, earlier
layers can get direct supervision from the final softmax layer,
and moreover, it results in decreasing the vanishing-gradient
problem. In addition, compared to other deep architectures
like residual connections, dense convolutions require fewer
parameters while improving the accuracy of the network.

In the proposed network, we used multi-level BConvLSTMs
to combine encoded and decoded features. The encoded fea-
tures have higher resolution and therefore contain more local
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Fig. 10. Visual effect of BConvLSTM in MCGU-Net . From left column
1 input, 2 GT mask, 3 and 4 are the outputs of network without and with
ConvLSTM.

Fig. 11. Visual effect of SE blocks in MCGU-Net. From left column 1 input,
2 GT mask, 3 and 4 are the outputs of network without and with SE blocks.

information of the input image, while the decoded features
have more semantic information about the input images. The
affection of these two features over each other might result
in a set of feature maps rich in both local and semantic
information. Therefore, instead of a simple concatenation, we
utilize BConvLSTM to combine the encoded and decoded fea-
tures. In BConvLSTM, a set of convolution filters are applied
on each kind of features. Therefore each ConvLSTM state,
corresponds to one kind of features (e.g. encoded features),
ia able to encode relevant information about the other kind
of features (e.g. decoded features). The convolutional filters
along with the hyperbolic tangent functions help the network
to learn complex data structures. Figure 10 shows the output
segmentation mask of the original U-Net and MCGU-Net for
two samples of the ISIC 2018 dataset. It shows a more precise
and fine segmentation output of the proposed network.

In Figure 11, we compare the segmentation output of the
MCGU-Net with and without SE blocks for two samples
of ISIC 2018 dataset, which demonstrates the power of SE
features on semantic segmentation. It can be seen that the SE
blocks help the network to produce more precise output by a
context gating mechanism. To do that, this block exploits the
global information embedded features in different channels
and assign different channel attentions. The quality of the
segmentation output of a network relies on effective feature
learning. These findings reveal that the adaptive feature recal-
ibration of SE blocks result in boosting the representational
power of deep networks by focusing on informative features
and suppressing weak ones.

V. CONCLUSION

We proposed MCGU-Net for medical image segmentation.
We showed that by including multi-level BConvLSTM in
the skip connection, SE blocks in decoding path, inserting a

densely connected convolutional blocks, and also employing
SE blocks in decoding path, the network is able to capture
more discriminative information which resulted in more pre-
cise segmentation results. Moreover, we were able to speed up
the network by utilizing BN after the up-convolutional layer.
The experimental results on six public benchmark datasets
showed high gain in semantic segmentation in relation to state-
of-the-art alternatives.
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