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Abstract—Hand gesture recognition from sequences of depth
maps is a challenging computer vision task because of the low
inter-class and high intra-class variability, different execution
rates of each gesture, and the high articulated nature of human
hand. In this paper, a multilevel temporal sampling (MTS) method
is first proposed that is based on the motion energy of key-frames
of depth sequences. As a result, long, middle, and short sequences
are generated that contain the relevant gesture information. The
MTS results in increasing the intra-class similarity while raising
the inter-class dissimilarities. The weighted depth motion map
(WDMM) is then proposed to extract the spatio-temporal infor-
mation from generated summarized sequences by an accumulated
weighted absolute difference of consecutive frames. The histogram
of gradient (HOG) and local binary pattern (LBP) are exploited
to extract features from WDMM. The obtained results define
the current state-of-the-art on three public benchmark datasets
of: MSR Gesture 3D, SKIG, and MSR Action 3D, for 3D hand
gesture recognition. We also achieve competitive results on NTU
action dataset.

Index Terms—Hand gesture recognition, Multilevel temporal
sampling, Weighted depth motion map, Spatio-temporal descrip-
tion, VLAD encoding.

I. INTRODUCTION

HAND gesture recognition from sequences of depth maps
is an active research area in computer vision; because

of its potential applications in sign language processing [47],
video surveillance [1], medical training [2], remote control-
ling [3], and human-environment interaction [4]. The hand
gesture recognition (HGR) refers to classification of dynamic
hand movements in action videos. Generally, HGR can be
decomposed into three main steps of hand detection, feature
extraction, and classification.

Early work on hand detection was based on wearable
sensors; such as data gloves. Although those sensors result
in accurate measurements of hand pose and location, they
are expensive and invasive and also require accurate cal-
ibration. Therefore, they are inappropriate for uncontrolled
application scenarios. Fortunately, recent advances in imaging
devices, like Microsoft Kinect, have received great attention
from researchers to reconsider the problems such as gesture
recognition from depth information [5, 6].
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For feature extraction, one has to deal with different cam-
era viewpoints, variable hand sizes, finger occlusions, and
also different execution rates. These may cause high intra-
class variations. Furthermore, there are some gestures with
different labels for which some parts of hand movements or
hand poses are equivalent, showing low inter-class variations.
Consequently, video representation and feature extraction are
critical steps in order to compute discriminative descriptors
that are robust to aforementioned challenges. In terms of
depth video representation, the so called depth motion map
(DMM) has been used by several researches as a global
temporal template to codify gestures [7, 8]. Also, DMM is
formed by accumulating the absolute distance of consecutive
frames from different projection views. The last step includes
classification of feature descriptors. For handcrafted features,
machine learning tools like support vector machine (SVM)
and random forest (RF) are commonly used for classification.

Many descriptors of HGR behave differently for actions
performed with different speeds. This challenge causes to
increase the intra-class variations and therefore decreases the
recognition accuracy. In order to make the method robust
against different execution rates of each gesture, the input data
is augmented by the proposed MTS method. Three temporal
scales of long, middle, and short duration are generated from
the original data by sampling key-frames of input depth
map sequences. These key-frames are selected based on their
motion energy which are estimated by the absolute difference
of consecutive frames.

The WDMM is proposed as a temporal weighted version
of DMM to compute one single image from a sequence of
depth frames by accumulating motion energy of the projected
depth maps into three projective views. The temporal weights
are used to distinguish the motion direction by giving more
weight to recent depth frames.

In this paper, the HOG [9] and LBP [34] descriptors are
employed to extract features from WDMM. HOG descriptor
is able to describe the local object appearance and shape within
an image. It is formed by using the distribution of intensity
gradients. On the other hand, the LBP descriptor is a powerful
and effective texture descriptor. In fact, to describe the local
texture patterns of an image, LBP compares every gray value
to the center pixel of a neighborhood and computes a binary
code by setting a threshold on those comparisons.

Next, the vector of locally aggregated descriptors VLAD
encoding process [10] is employed to transform the local
features (extracted by HOG and LBP) into a fixed-size vec-
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tor representation. Then, to reduce the dimension of feature
vectors, the principal component analysis (PCA) is applied
on the VLAD encoded descriptor. At the last stage, the
single hidden layer feed-forward neural network (SLFN) with
extreme learning machine (ELM) [11] is utilized to classify
hand gestures. The key contributions of this work can be
summarized as follows:
• A novel MTS method based on key frame extraction is

introduced for generating long, middle, and short videos.
• A new weighted method is proposed to compute the

depth motion map to consider the order of temporal
information.

• A compact representation of video sequence is computed
by utilizing the combination of VLAD encoding of HOG
and LBP visual words.

• The proposed method achieves the state-of-the-art results
on MSR Gesture 3D, SKIG, and MSR Action 3D datasets
and outperforming deep learning results. Moreover, the
result of NTU which is the largest RGB-D available
dataset, is competitive to the state-of-the-art methods1.

The rest of this paper is organized as follow. In Section II,
related work are reviewed. Section III presents the proposed
video representation. Experimental results are given in Section
IV. Finally, the paper is concluded in Section V.

II. RELATED WORK

Gestures are body motions that convey meaningful informa-
tion to interact with the environment. Gestures involve physical
motions of fingers, hands, face, arms, and torso. In this section,
we review main methods related to HGR from sequences of
depth maps. Several surveys have been published for gesture
recognition from depth data [12]. There are also some work
that make use of both RGB and depth data [13, 14]. During
the last few years, the progress of depth sensing devices, like
Microsoft Kinect, have greatly promoted the research on HGR.
Microsoft Kinect includes a depth camera and a video graphics
array (VGA) camera. Both cameras produce image streams at
30 frames per second (fps). Depth-based gesture recognition
can be categorized into three groups of hand skeleton, spatio-
temporal volume of hand, and deep learning-based methods.
These are discussed next.

A. Hand Skeleton

Connected joints of hand skeleton are mostly extracted from
depth maps. Two kinds of geometrical features (spatial and
temporal) can be extracted from the skeletal data. In each
frame, the relative positions (like Euclidean distance) of hand
joints (to each other or to reference points) are extracted as
spatial features. Temporal features are formed by the relative
position of hand joints in each frame to the same joints in
other frames. These define joint trajectories.

Smedt et al. [15] used 22 hand joints returned by the Intel
RealSense camera. Movement, the rotation of hand in space
and also hand shape variations based on skeleton joints are

1Our source code is available on https://github.com/rezazad68/Dynamic-
3D-Action-Recognition-on-RGB-D-Videos.

encoded using a temporal pyramid. In the work of [16], Smedt
et al. represented 3D Hand gestures as a set of trajectories of
relevant joints of hand-parts in the Euclidean space.

Escobedo et al. [17] used the 3D trajectory of hand skeleton
in spherical coordinates to extract key frames from input
sequences. Lu et al. [5] proposed single-finger and double-
finger features. Euclidean distances between fingertips and
a reference point and also the angles between them formed
the single finger features. Double finger features includes
Euclidean distances and angles between adjacent fingertips.

Unfortunately, some shortcomings limit the usage of skeletal
information for both gesture and action recognition. To men-
tion some, localizing hand joints is a time-consuming task that
needs high-resolution images. Moreover, estimation of hand
joints is unreliable or even fails in presence of self-occlusion.

B. Spatio-Temporal Volume of Hand
Spatio-temporal volumes of hand have been used to ex-

tract spatio-temporal features from sequences of depth maps.
Elmezain et al. [18] first detected and tracked hand by using
RGB-D information. They then extracted location, orientation,
and velocity of hand using the spatio-temporal volume of
detected hand. In [19], Kurakin el al. proposed an orientation
normalization method for hand gesture recognition from depth
data. The depth image was rotated in such a way that the palm
is approximately parallel to the image plane. The silhouette
computed from volume of gestures was divided into some cells
and then features were extracted from those cells.

The 3D kernel descriptor [20] utilized the unsupervised ker-
nel principal component analysis (KPCA) to learn a compact
descriptor from the spatio-temporal gradient of depth data.
Asadi and Kasaei [21] proposed supervised spatio-temporal
kernel descriptor (SSTKDes) to define a discriminative and
compact feature representation of depth sequences.

Yang and Tian [23] proposed the super normal vector
(SNV), in which the hypersurface normal vectors in each
spatio-temporal neighborhood were clustered to form the low
level poly-normal. The histogram of oriented 4D normals
(HON4D) [22] and DMM [7, 8] have been also extracted from
spatio-temporal volumes of depth sequences. The HON4D
descriptor was based on the distribution of 4D normal vectors
in some spatio-temporal cells of actions. In DMM, the point
cloud of a human body was projected onto three orthogonal
Cartesian views. Then, the global spatio-temporal activity of
the entire video sequences was accumulated on those planes.
Subsequently, the HOG and LBP descriptors were utilized to
form the final descriptor.

Methods based on spatio-temporal hand motion are mostly
the fastest ones. However, the motion-based descriptors have
their own drawbacks. For instance, sometimes there is no
difference between paired sequences (”sit-down” and ”stand-
up”). Moreover, variations in execution rates of each gesture
result in sequences with different lengths, which in turn
reduces the final accuracy.

C. Deep Learning-based Methods
Asadi et al. [13] divided the main deep learning-based

methods into four groups of 2D models, motion-based input
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features, 3D models, and temporal methods. In the first cat-
egory, 2D convolutional neural network (CNN) is utilized to
extract spatial features from one or more sampled frames of
the whole video. The label of the gesture is calculated by score
averaging of the results of sampled frames. For sign language
gesture recognition, Kang et al. [24] utilized a CNN to extract
features from the fully connected layer for depth maps. To
consider motion information, in the second category, simple
motion features (like optical flow) are first pre-computed and
then are fed to the 2D models. Wu et al. [25] exploited a two-
stream CNN to learn a set of training gestures. In fact, raw
depth data is fed to the spatial network and optical flow is used
as the input of temporal network. Wang et al. [26] employed
CNN for classification of DMMs which are extracted as basic
motion features from depth sequence. Asadi et al. [27] used
scene flow which is the real 3D motion of objects as the input
data of CNN. Wang et al. [28] also proposed to utilize the
scene flow. In order to take advantage of the available model
trained over ImageNet, the scene flow is first transformed to an
optimal color space analogous to RGB. They then used motion
maps constructed from the sequence of scene flow data as the
input data of the 2D deep model.

The 3D filters in the convolutional layers are utilized in
the third category which allows to capture discriminative
information along both spatial and temporal dimensions at the
same time. Molchanov et al. utilized 3D CNN to recognize
hand gestures. In [29], the saliency video was generated from
the RGB data to focus on the salient object in the video. They
then used the C3D to extract spatio-temporal features from
RGB-D, and saliency videos. Late fusion was then employed
to combine the features extracted from these three modalities.

Finally the fourth group uses temporal processing tools (like
recurrent neural network (RNN) with LSTM) to process input
sequences. Molchanov et al. [30] exploited both 3D CNN and
RNN for recognizing hand gestures. In their method, short
clips of the entire video were fed to the 3D CNN and then the
outputs of 3D CNN were used as the input to RNN. Neverova
et al. [31] proposed a multimodal (depth, skeleton, and speech)
human gesture recognition system based on RNN. Discrimi-
native data-specific features were either manually extracted or
learned from short spatio-temporal blocks. Then, RNN was
employed for modeling large-scale temporal dependencies,
performing data fusion, and ultimately classifying gestures.

Zhang et al. [32] utilized the combination of 3DCNN,
Convolutional LSTM, and 2DCNN for action recognition
from the RGB-D data. To do that, short-term spatio-temporal
features were first learned by the 3DCNN and then by em-
ploying the Convolutional LSTM, long-term spatio-temporal
features were learned. This combination resulted in 2D spatio-
temporal feature maps. The authors lastly recognized gestures
by exploiting the 2DCNN on 2D feature maps. In [33], Luo et
al. proposed an unsupervised approach to extract atomic 3D
motion as the features for action recognition.

Although, deep learning-based methods have improved
the performance of classical handcrafted methods in many
applications (like image classification), gesture and action
recognition methods have not gained a high performance
from deep networks. The reason behind this is that a large

annotated dataset (like ImageNet) is required to learn a large
number of weights, which is not currently available for gesture
recognition purposes. Finetuning deep networks for gesture
recognition from pre-trained models on ImageNet results
in performance improvements; however, for not very large
datasets, handcrafted features still outperform deep models.

In this paper, which mostly belongs to the second category,
the depth sequences of gestures are considered as spatio-
temporal volumes. To make the method robust to the execution
rate of each gesture, the MTS is introduced. It generates
an extended set of videos with different lengths based on
the motion energy of frames. Then, WDMM is formed by
accumulating the input sequence in such a way that recent
frames have more contribution than passed frames. It makes
descriptor robust against temporal direction of gestures. As
handcrafted features, HOG and LBP extracted from WDMM,
are encoded by VLAD. These are then classified by the SLFN
with ELM.

III. PROPOSED METHOD

The general overview of the proposed method is depicted in
Figure 1. This paper aims at designing a robust representation
for HGR. Then, by transforming the depth sequence into this
representation, its target is labeling the video.

A. Problem Definition

Input videos of the proposed method are sequences of depth
maps of hand, shown by {dt|1 ≤ t ≤ T}. The output of the
method is the label of each input video. In each sample, the
subject is performing one meaningful hand gesture. First, the
hand region is normalized to a fixed size (to cope with different
hand sizes). To make the proposed method robust to the length
of input videos (i.e., intra-class variation), the MTS method
is introduced. Based on the key frame extraction process, the
MST produces a long, middle, and short level of videos with
different fixed numbers of frames from the original one.

Each depth frame is then projected onto three Cartesian
planes to form 2D projected images. To take into account the
temporal information, each sequence is divided into shorter
clips. A temporal weighted version of DMM (WDMM) is
proposed to compute one image from a sequence of depth
frames. For describing each WDMM, it is divided into some
patches. The HOG and LBP descriptors are employed to
extract features from each patch of WDMM l,v

c,p, which is the
pth patch of the WDMM computed from the cth clip with the
temporal level of l in view v. All of the features extracted
from one sample are encoded by the VLAD encoding. The
SLNF with ELM method is exploited for the classification.

B. Notations and Terms

Prior to presenting the proposed method, the main terms
used in the rest of this paper are first presented in this
subsection. The input video is defined as {dt|1 ≤ t ≤ T},
where dt is the tth frame of the input sequence. In this paper,
the input depth map is first converted to a binary image. In
other words, each pixel of the depth map has a binary value
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Fig. 1: General overview of proposed method.

of {0,1}. Therefore, d′t can be defined as the complementary
of dt (in which, zeros become ones and ones become zeros).
The motion energy of frame t is represented by Et. Term
l ∈ {long,middle, short} is exploited to show the levels
of temporal sampling. The projection views are indicated by
v ∈ {top, side, bottom}. Also, Nc is the number of clips for
each input video. The length of each clip is denoted by K. The
feature vector extracted by the HOG and LBP are shown by
Hv and Lv , respectively. The final feature descriptors for each
view of v after employing the VLAD and PCA are defined by
Vv

H and Vv
L for HOG and LBP, respectively.

C. Multilevel Temporal Sampling

An important challenge in gesture recognition is the intra-
class variation on account of different execution rates of the
same gestures. To address this important problem, a new
method based on MTS is proposed. A naive method could be
down-sampling by selecting random frames. However, some
relevant information in unselected frames might be lost. In
order to mitigate this issue, the MTS method based on the
motion energy of each frame is proposed. To do so, the
motion energy of each frame is defined by accumulating the
differences of each frame with its next frame over all pixel
values, as Et =

∑N
i=1 (dt(i) − dt+1(i))

2, where dt is the
tth depth frame of the input video, N is the number of
pixels in one frame, and Et is the energy of that frame.
By expanding this equation, the motion energy is Et =∑N

i=1 (d2t (i)−dt(i)dt+1(i))+
∑N

i=1 (d2t+1(i)−dt(i)dt+1(i)).
It is assumed that the value of each depth pixel is binary. Thus,
d2t (i) = dt(i). Now, the motion energy will be

Et =
N∑
i=1

(dt(i)(1− dt+1(i))) +
N∑
i=1

(dt+1(i)(1− dt(i)))

=
N∑
i=1

(dt(i) d
′
t+1(i)) +

N∑
i=1

(dt+1(i) d′t(i)),

(1)
where d′t is the complementary of dt, in which, zeros become
ones and ones become zeros.

There are two components in Equation 1 (i.e., dt(i) d′t+1(i)
and dt+1(i) d′t(i)), which can be considered as the backward

and forward motion. What is important for gesture recognition
is the movement of human body during the temporal dimen-
sion. If the background of frames is removed, the movement
of human body can be introduced as the new parts of the space
that are occupied by that human body in the next frame. In
other words, the pixel values change from 0 to 1. Therefore,
the forward motion is considered as the final motion energy
function for each frame, as Et =

∑N
i=1

(
dt+1(i) d′t(i)

)
.

To sample video frames in different levels, it is crucial to
select frames with relevant visual information (to discriminate
different gestures and maximize the information contained in
the original video). Here, input frames are sampled based on
the change rate of motion energy ∆E = |Et−Et+1|; i.e., the
difference of the energy function of each frame and its next
frame. Particularly, frames with higher body movements than
their neighbors are selected.

In order to have a video with the fix length of M , the
first and the last frames are first selected and then M − 2
frames with the highest ∆E values are sampled from the
rest of the video. Here, three levels of long, middle, and
short temporal samples are extracted from the original video,
denoted by l ∈ {long,middle, short}, where the long level is
the original video, the middle one contains 50% of the length
of the original video, and the 30% of the input length is used
to form the short level. It is worth mentioning that different
number of levels were tested and three levels were empirically
selected according their better results. The next steps of the
proposed method are applied on each level, separately.

D. Weighted Depth Motion Map

Depth frames can be used as a part of the point cloud of
the environment. For each depth video sequence, depth frames
are first projected onto three orthogonal Cartesian planes. This
projection forms the 2D projected images corresponding to the
three projection views of front, side, and top denoted by dl,v,
where v ∈ {front, side, top}.

The DMM introduced in [7] captures information changes
along the temporal dimension for each view. For each pixel,
differences of depth values between two consecutive frames
are calculated. The original DMM [7] is obtained by stacking
the differences greater than a given threshold. The main
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problem related to the original DMM is that the order of
temporal information is lost. To address this problem, in the
proposed method, two solutions are given. First, the WDMM
is introduced. Based on this idea, the absolute differences
of frame pixels are stacked by using a weighting method.
In other words, pixel values near to the ending frames have
more effect on the WDMM. Next, instead of computing
the WDMM for the whole video sequence, the input is
divided into Nc shorter clips with a fixed length of K. Then,
WDMM is computed for all clips, separately. These clips are
selected with 50% of overlap. Finally, WDMM is calculated
as WDMM =

∑K
t=1|d

l,v
t − d

l,v
t+1|2t, where K is the length

of clips. It is selected as 16, 8, and 4 for long, middle, and
short videos, respectively. The final algorithm for extracting
WDMM is shown in Algorithm 1. In Figure 2(a), some
samples of WDMM for different levels of a front view are
shown.

Algorithm 1 Extraction of WDMM

1: Input video = d1, d2, ..., dT (T is the video length)
2: Output = WDMM l,v

c

3: for l ∈ {long, middle, short} do
4: for v ∈ {front, side, top} do
5: for c=1 to Nc do
6: WDMM l,v

c =
∑cK

2 +K

t=(c−1)K
2 +1
|dl,vt − d

l,v
t+1|2t

7: end for
8: end for
9: end for

E. Descriptor

The HOG and LBP features are first extracted from the
WDMM of each clip. Then, extracted features are mapped to a
new feature space by the VLAD encoding approach. The PCA
is then applied on encoded features to produce the dimension
reduction final feature description of depth videos.

1) Feature Extraction: Patch-based HOG and LBP are
two simple, yet effective, feature extraction methods. The
HOG feature describes the local hand motion and appearance
of WDMM. It computes histograms of spatial gradients by
counting the occurrences of gradient orientations in localized
portions of WDMMs. To do that, each WDMM is divided into
small interconnected areas, of size 8 × 8, called a cell. The
histogram of gradient directions, of size 9, is computed for
all pixels within each cell by quantizing the range [0, π] of
gradient orientations. In a higher level, a WDMM is divided
into P patches which are considered as four neighboring
cells, denoted by WDMM l,v

c,p (1 ≤ p ≤ P ). Patches are
selected with 50% of overlap. The patch feature is formed by
concatenation of features from its contained cells. Therefore,
it has a feature vector of length 36. For each input video, three
matrices of HOG features are extracted for the three different
views. Each HOG has a matrix of Hv ∈ R3PNc×36, where
v ∈ {front, side, top}, P is the number of patches, Nc is
the number of clips, 3 is the number of levels, and 36 is the
length of each HOG feature vector. The rows of matrix Hv are
related to the features extracted from WDMM l,v

c,p. In Figure

2(b), the HOG description of three levels of temporal sampling
is shown.

The LBP is an effective texture descriptor that has been used
in various image processing and computer vision applications,
thanks to its high computation speed and discriminative power.
It can be considered as a temporal template for representing
gestures and actions. The LBP describes the local texture
pattern of an image by labeling all image pixels with a binary
code. This binary code is calculated by comparing the gray
value of each pixel (as a center) with its neighbors. For
each pixel q, a set of m neighbors N (q, r) is defined such
that these pixels are equally spaced on a circle of radius
r, (r > 0), with the center at q. In [34], the LBP of pixel q
is calculated as LBP (q) =

∑m
i=1

(
(d(q′i)− d(q)) > 0

)
2i−1,

where q′i ∈ N (q, r) is the mth neighbor around pixel q with a
circle of radios r centered at q. In this work, r = 1, 2, and 3
are used. The LBP is depicted in Figure 2(c) for three levels
of temporal sampling.

Like HOG, for LBP the input frame is divided into P
patches. Patch features are formed by calculating the his-
togram of LBP codes of all pixels within it. For each input
video, three matrices of LBP features are extracted for the
three different views. Each LBP representation is a matrix
of Lv ∈ R3PNc×59, where v ∈ {front, side, top}, P is the
number of patches, Nc is the number of clips, 3 is the number
of levels, and 59 is the length of each LBP feature vector.
Rows of matrix Lv are related to the features extracted from
WDMM l,v

c,p (1 ≤ p ≤ P ).

2) VLAD Encoding: For each WDMM of the clip, there
are two kinds of separate feature matrices (Hv and Lv). Each
row of these matrices is an n-dimensional vector. To compute
the final feature descriptor of the video, the VLAD encoding
process is used (it is an efficient super vector encoding
method). It can be considered as a kind of feature mapping
exploited to transform the local features into a fixed size vector
representations. The encoding is applied on HOG and LBP,
separately. Details of VLAD encoding can be found in [10].
Some of visual words extracted for VLAD encoding are shown
in Figure 3.

The normalized VLAD encoding of the three projection
views are concatenated to form the video feature descriptor.
The final feature descriptor is computed by performing PCA
on the video feature. The algorithm of feature description is
shown in Algorithm 2.

3) Classification: The SLFN with ELM method is used for
classification [11]. The ELM randomly chooses hidden nodes
and analytically determines the output weights of SLFNs.
Gradient decent-based methods, which have been mainly used
in the learning algorithm of feed-forward neural network, have
two drawbacks. They are generally very slow and may easily
converge to local minima. To overcome these problems, ELM
[11] is used. It tends to reach the smallest norm of the weights
while trying to minimize the training error. The learning speed
of ELM is thousands of times faster than the traditional feed-
forward network learning [11].
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(a) (b) (c)
Fig. 2: a) Three levels of temporal sampling long, middle, and short (from left to right), b) HOG description for three levels
of temporal sampling c) LBP description for three levels of temporal sampling.

Fig. 3: Some extracted visual words from hand regions.
Algorithm 2 Feature Description

1: Input = All sequences of WDDM l,v
c for one sample

2: Output = DescriptorH, DescriptorL
3: for v ∈ {front, side, top} do
4: for l ∈ {long, middle, short} do
5: for c = 1 to Nc do
6: for p = 1 to P do
7: Hv = HOG(WDMM l,v

c,p)
8: Lv = LBP (WDMM l,v

c,p)
9: end for

10: end for
11: end for
12: Vv

H = PCA(V LAD(Hv))
13: Vv

L = PCA(V LAD(Lv))
14: end for
15: DescriptorH =

[
Vtop

H ,Vfront
H ,Vside

H

]
16: DescriptorL =

[
Vtop

L ,Vfront
L ,Vside

L

]

IV. EXPERIMENTAL RESULTS

The proposed HGR method is evaluated on four RGB-D
datasets of MSR Gesture 3D, SKIG, and MSR Action 3D,
and NTU. These are described in Section IV-A. The method
is evaluated for different parameter values in Section IV-B.
Performance of the method is compared against the state-of-
the-art methods for RGB-D action recognition in Section IV-C.

A. Datasets

Four challenging datasets of MSR Gesture 3D, SKIG, MSR
Action 3D, and NTU are utilized in the evaluation process.

1) MSR Gesture 3D Dataset: The MSR Gesture 3D dataset
(Figure 4) [19] contains depth sequences of 12 dynamic
American sign language (ASL) gestures of bathroom, blue,
finish, green, hungry, milk, past, pig, store, where, j, and z.
Each gesture contains the segmented hand portion (above the
wrist). It is performed by 10 subjects for twice or 3 times.
There is no available RGB data for this dataset.

2) SKIG Dataset: The SKIG [6] is a hand gesture dataset
which includes totally 2160 hand-gesture video sequences
from six people, 1080 RGB sequences, and 1080 depth se-
quences. In this dataset (Figure 4), there are 10 categories of

MSR Gesture 3D SKIG MSR Action 3D NTU

Fig. 4: Samples from the utilized datasets [19, 6, 35].

gestures triangle (anti-clockwise), circle (clockwise), right and
left, up and down, wave, hand signal Z, come-here, cross, pat,
and turn around. All these sequences are extracted through a
Kinect sensor and the other two synchronized cameras.

In order to increase the variety of recorded sequences,
subjects are asked to perform three kinds of hand postures:
fist, flat, and index. Furthermore, three different backgrounds
(i.e., wooden board, paper with text, and white plain paper) and
two illumination conditions (light and dark) are used in SKIG.
Therefore, in total, there are 360 different gesture sequences
accompanied by hand movement annotations for each subject.

3) MSR Action 3D Dataset: The MSR Action 3D Dataset
[35] contains gaming actions (Figure 4). It consists of depth
sequences of 20 actions of: high arm wave, horizontal arm
wave, hammer, hand catch, forward punch, high throw, draw x,
draw tick, draw circle, hand clap, two hand wave, side boxing,
bend, forward kick, side kick, jogging, tennis swing, tennis
serve, golf swing, and pick up and throw; each performed by
10 subjects for twice or 3 times. The frame rate is 15 fps with
the resolution of 320× 240. The background of this dataset is
removed. The most important challenge of this dataset is the
inter-action similarities. It only contains depth videos.

4) NTU Dataset: The NTU dataset [37] (Figure 4), cap-
tured with Kinect (v2), is currently the largest available RGB-
D action dataset, with more than 56000 sequences and 4
million frames. This dataset contains 60 action classes includ-
ing daily actions, medical conditions, and pair actions. The
sequences of skeletal information (25 body joints), RGB and
depth frames are available for all samples. These actions are
performed by 40 different people aged between 10 and 35, in-
cluding both one-person daily actions (e.g., clapping, reading,
writing) and two-person interactions (e.g., handshaking, hug,
pointing). All samples are captured by three cameras which
have been placed at different locations and view points. In
total, there are 80 distinct viewpoints. The large intra-class
and viewpoint variations make the dataset very challenging.

B. Parameter Setting

There are some parameters to be set in the proposed method.
To set these parameters it is needed to use the validation
set. As there is no prepared validation set for all datasets,
20% of training data is randomly selected as the validation
set. All parameters are set by evaluation. From all utilized
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parameters, the number of visual words and the number of
PCA components significantly affect the final accuracy. These
parameters are evaluated in this Section.

1) Visual Words: One of the used parameters is the number
of visual words. This parameter is evaluated with three kinds
of features: HOG, LBP, and the combination of both. Different
values from 8 to 128 have been tested for this experiment.
Figure 5(a-c) shows the effect of this parameter on the
validation set of three datasets of MSR Gesture 3D, SKIG,
MSR Action 3D, respectively. The best accuracy was achieved
by 25, 30, and 70 (Figure 6(a)) number of visual words for
MSR Gesture 3D, SKIG, and MSR Action 3D, respectively.
The accuracy of the proposed method for different values of
the number of visual words is depicted in Figure 5(d) for NTU
dataset. It can be seen that the best number of visual words is
70 for this dataset.

The number of visual words (i.e., dictionary size) is a
factor that affects the performance of action recognition. Each
visual word in a dictionary describes a kind of local feature
included in input data. Therefore, a small number of visual
words may lack the discriminative power (since two kinds of
local feature may be assigned into the same visual word even
if they are not similar to each other). On the other hand, a
large number of visual words can completely deteriorate the
performance, because it is less generalizable, more sensitive
to noise, and contains extra processing overhead. Since visual
words describe the conceptual content of images, the number
of visual words is highly dependent on the used dataset.
For representing data with more complex information, larger
number of contextual visual words is needed.

Among four utilized datasets in this work, the extracted
WDMMs from MSR Action 3D and NTU have more local
features since these datasets contain the whole human body
in all frames. Therefore, a larger number of visual words
is expected for these datasets than the ones based on hand
gestures. Figure 5(d) and 5(a) show that the best accuracy for
these datasets is achieved by 70 as the dictionary size. The
MSR Gesture 3D and SKIG datasets have 12 and 10 categories
of gestures, respectively. Although the number of classes for
the MSR Gesture 3D is larger than the SKIG, gestures from
different classes are more similar in the MSR Gesture 3D
rather than in the SKIG. Moreover, frames of the MSR Gesture
3D include only the hand part of the body while the hand and
forearm are visible in samples of the SKIG dataset. Hence,
for the SKIG, more visual words are needed to discriminate
gestures due to more image content and inter-class similarities.

These evaluations also show that the proposed method
achieves the best result by using the combination of the HOG
and LBP features. The rest of the experiments are performed
by utilizing 25, 30, 70, and 70 as the number of visual words
for the MSR Gesture 3D, SKIG, MSR Action 3D, and NTU
datasets, respectively.

In all experiments, the accuracy of the method is depicted
for the range of [25, 128] of the number of visual words.
By increasing the number of visual words to larger numbers
(larger than 128), the accuracy does not change for a while.
This increment makes the method more sparse and causes
additional processing overhead. After a while, the accuracy

decreases and overfitting occurs.
2) PCA: The number of components selected by PCA is an-

other parameter that is needed to be set. Figure 6(b) shows the
overall accuracy of the proposed method for different number
of PCA components on the validation set. By increasing the
number of PCA axes from 70 to 130, the accuracy increases
for all datasets. The method is also evaluated with different
number of PCA components, from 100 to 4000, for the NTU.
Since this dataset has more number of classes, the length of
feature vectors may require to be larger. By increasing this
number from 100 to 1000, the accuracy of the method grows.
Then, for the range of 1000 to 3000, the accuracy is almost
the same. After 130, for the first three datasets, and 3000 for
the NTU, the accuracy decreases or does not change. This
might be related to the fact that the highly dimensional space
of the feature vector increases the possibility of overfitting.
From Figure 6(b), it can be seen that 130 is the best value for
the first three datasets, and 2000 is the best size for the NTU.
The rest of results are achieved by this size of features.

C. Performance Comparison
In order to compare the accuracy of the proposed method

with deep learning-based method, the CNN is utilized to
classify the WDMM. To do that, three networks (AlexNet) are
trained for three views. Since there is no pre-trained network
with the WDMM as the input data, CNNs are finetuned
from a pre-trained network on the ImageNet. Weighted score
averaging is used to combine the results from three views.
It is worth mentioning that some features are extracted from
different layers of the CNN and are replaced with handcrafted
features. The result has no significant difference with an end-
to-end network.

In Figure 7(a), the confusion matrix of the proposed method
for MSR Gesture 3D is depicted. As this figure shows, the
proposed method is able to correctly classify most of the
gestures within 9 categories for this dataset.

Table I lists the accuracy obtained by different methods
on the MSR Gesture 3D dataset. The achieved accuracy of
the combination of HOG and LBP features is better than
processing each feature separately. It can also be seen that
the accuracy of the LBP is higher than that of the HOG,
with a small margin. In fact, as HOG is a gradient-based
feature extraction method, it considers the changing rate of
values of pixels with their neighbors for different orientations,
separately. However, LBP features are based on comparison
of pixels with all of their neighbors in all directions at the
same time. Therefore, LBP is more powerful than HOG in
this case. Among all methods listed in Table I, the proposed
method achieves the best result. Note that the combination of
HOG and LBP features outperforms the CNN.

The confusion matrix on the SKIG dataset is shown in
Figure 7(b). Comparison of the confusion matrix on MSR
Gesture 3D and SKIG dataset shows that the SKIG dataset has
more inter-class similarities. The per class accuracy of only
2 classes of gestures is 100% for SKIG. Gesture categories
in SKIG datasets are more similar to each other than MSR
Gesture 3D dataset. This inter-class similarity, in most classes,
causes one or more misclassified samples.
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Fig. 5: Accuracy vs the number of visual words for: a) MSR Gesture 3D, b) SKIG, c) NTU, and d)MSR Action 3D Datasets.
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In Table II, the performance of the proposed method is
compared with that of the state-of-the-art methods on the
SKIG dataset. For the SKIG dataset, the LBP results in higher
accuracy than HOG. The accuracy of the combination of LBP
and HOG features is higher than most of other state-of-the-art
methods except one. The method proposed by Molchanov et
al. [30] is a deep learning-based method. It utilizes both RGB
and depth data while the proposed method only uses the depth
data. For this dataset, also, the combination of HOG and LBP
features outperforms the CNN.

To show the generalization capabilities of the proposed
method, an action recognition dataset is also evaluated. In
Figure 8, the confusion matrix on MSR Action 3D dataset
is shown. The per class accuracy for 13 actions is 100%.

Table III compares the performance of the proposed method
with that of the existing state-of-the-art methods. Unlike other
previous datasets, the accuracy of HOG features is better than
LBP for this dataset. The reason might be related to the

TABLE I: Performance comparison on MSR Gesture 3D.

Method Year Modality Accuracy
ROP[36] 2012 Depth 88.50

DMM + HOG[7] 2012 Depth 89.20
HON4D[22] 2013 Depth 92.45

H3D Facets[39] 2015 Depth 95.0
DMM+ LBP[8] 2015 Depth 95.0

Subspace encoding[40] 2016 Depth 95.50
HKD [20] 2016 Depth 96.09

Histogram data[41] 2017 Depth 94.70
SSTKDes[21] 2017 Depth 97.02

Active Incremental Learning[42] 2017 Depth 91.25
Extended SNV [23] 2017 Depth 94.74

3DHoTs[41] 2017 Depth 94.7
Proposed CNN 2018 Depth 97.21
Proposed HOG 2018 Depth 96.22
Proposed LBP 2018 Depth 96.52

Proposed HOG + LBP 2018 Depth 98.05

TABLE II: Performance comparison on SKIG.

Method Year Modality Accuracy
Discriminative Rep.[6] 2013 RGB-D 88.7

Shape Model[43] 2014 RGB-D 96.0
4DCov [44] 2014 Depth 93.8

Binary Rep.[45] 2016 RGB-D 93.7
Depth context [46] 2016 95.37

3D CNN[30] 2016 RGB-D 98.6
LSTM [47] 2017 Depth 91.30

Fusion of deep[47] Depth 2017 93.3
Proposed CNN 2018 Depth 96.11
Proposed HOG 2018 Depth 95.0
Proposed LBP 2018 Depth 95.60

Proposed HOG + LBP 2018 Depth 97.31
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Fig. 8: Confusion matrix on MSR Action 3D dataset.

fact that MSR Action 3D dataset contains full body actions
while other datasets include only hand gestures. For gesture
datasets, the relative position of different parts of hand is very
important. Therefore, the LBP can describe these positions
better than HOG. In the action dataset, the motion and shape
of the boundary of human body are more important in the
temporal dimension. Therefore, HOG which contains gradient-
based features, can handle this situation better than LBP.

Table III shows that the accuracy of the proposed method
which is higher than most of the state-of-the-art methods. It
is even comparable to the best accuracy which is achieved
by [21]. For this dataset, there is a high gap between the
accuracy of CNN and the combination of HOG and LBP. This
fact shows that for a small dataset, handcrafted methods still
outperform deep learning-based methods.

In order to evaluate the proposed method on large bench-
mark datasets, the NTU (the largest RGB-D action recognition
dataset to date) is exploited. There are two types of evaluation
procedures for this dataset, namely the cross-subject and cross-
view. In the cross-subject evaluation, 20 subjects are used as
the train set and the remaining subjects are reserved for test.
On the other hand, in the cross-view evaluation, two views are
utilized as the train and one view is used for test. Other depth-
based approaches that give the evaluation results on the NTU,
only publish the cross-subject accuracy. In other words, only
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TABLE III: Performance comparison on MSR Action 3D.

Method Year Modality Accuracy
Bag of 3D Points[35] 2010 Depth 74.70

ROP[36] 2012 Depth 86.20
HON4D[22] 2013 Depth 88.89

DMM+ LBP[8] 2015 Depth 94.9
Subspace encoding[40] 2016 Depth 94.06

Active joints[48] 2017 Skeleton 84.72
SSTKDes[21] 2017 Depth 95.60
3DHoTs[41] 2017 Depth 95.2

Extended SNV [23] 2017 Depth 93.45
Trust gate [49] 2017 Skeleton 94.8
ST-NBNN[50] 2017 Skeleton 94.8
Proposed CNN 2018 Depth 90.00
Proposed HOG 2018 Depth 91.94
Proposed LBP 2018 Depth 91.57

Proposed HOG + LBP 2018 Depth 95.24

skeleton-based approaches provide the cross-view evaluation
results. Following other depth-based papers, the cross-subject
evaluation results are reported.

Table IV compares the performance of the proposed method
on the NTU dataset with that of the existing state-of-the-art
methods. This table shows that the HOG descriptor works
better than the LBP. Like the MSR Action 3D, the NTU is
an action dataset. Therefore, the motion and shape of the
boundary of human body are more important in the temporal
dimension. As a result, the HOG descriptor works better than
the LBP. Moreover, it can be seen that for this dataset, the
CNN results in higher accuracy than the combination of HOG
and LBP, while for the other datasets handcrafted features
work better than the CNN. This evaluation demonstrates that
with the same input data, only with large enough data, deep
models are superior to handcrafted features for classification
purposes. In other words, with a large amount of input data,
deep models are able to learn better weights for classification
(but when the input data is not sufficient, compared to hand-
crafted features, deep models are not successful enough for
classification purposes).

In comparison with RGB-D-based approaches [23, 22, 33,
51], the proposed method with both handcrafted features and
CNN achieves higher accuracies, and the results of deep-based
methods are comparable with [52]. Among the skeleton-based
methods, the achieved result of the proposed method is higher
than [49, 53, 54, 55]. There are some recent skeleton-based
approaches [56, 57, 58] whose results are about 79− 80%. In
those approaches some complex deep networks or the combi-
nation of different kinds of those models [33, 56] are proposed
to classify actions. Therefore, a large number of weights needs
to be learned. On the other hand, compared to other deep
learning-based methods, the best accuracy of the proposed
method is achieved by a simple CNN model (i.e., AlexNet).
Therefore, other deep learning-based approaches have more
computational complexity than the proposed method. This fact,
in turn, demonstrates that the input data to the CNN model is
discriminate enough for gesture and action classification.

Moreover, the skeletal data is extracted from depth map,
and it has more semantic information than the value of pixels
in depth maps. However, it has also some limitations. Many
of usual gestures and actions are involved with the interaction
of the body with other objects. In some cases, appearances of
body parts and objects in the environment provide discrimi-

TABLE IV: Performance comparison on NTU.

Method Year Modality Accuracy
SNV [23] 2014 Depth 31.82

HON4D [22] 2013 Depth 30.56
FTP Dynamic Skeletons [55] 2015 Skeleton 60.23

Trust gate [49] 2017 Skeleton 69.2
ConvLSTM [33] 2017 RGB-D 66.2

MTLN [56] 2017 Skeleton 79.57
Lie groups [54] 2017 Skeleton 61.37

Two-stream RNN [53] 2017 Skeleton 71.3
GCA-LSTM [59] 2017 Skeleton 74.4
SkeletonNet [60] 2017 Skeleton 75.94

SLP-TEP [51] 2017 Depth 58.22
DSSCA-SSLM [52] 2017 Depth 74.86

Proposed CNN 2018 Depth 75.16
Proposed HOG 2018 Depth 65.14
Proposed LBP 2018 Depth 62.73

Proposed HOG+LBP 2018 Depth 68.66

native information. As such, the skeletal data is insufficient to
distinguish gestures and actions which involve human-object
interactions. For instance, the skeleton-based methods might
fail when the gestures or actions with very similar skeleton
movements interact with totally different objects.

Moreover, in skeleton-based models, the estimation of body
or hand joints is unreliable (or even fails) in some real-life
cases including: i) when the resolution of the depth map is
not high enough, ii) in presence of occlusion or self-occlusion,
iii) when the subject touches the background, and iv) in
outdoor environments. With inaccurate body joints, the intra-
class variations increase in gestures or actions. Furthermore,
the computational cost of extraction of skeleton in multi-
person frames can be very high.

D. Multilevel Temporal Sampling Analysis

One of the most important challenges of gesture recognition
is different execution rates. In other words, the video length of
the same hand gestures is variable for different subjects. The
histograms of length for the three datasets of MSR Gesture
3D, SKIG, and MSR Action 3D are depicted in Figure 9.

Fig. 9: Histogram of video length for all dataset.
It can be seen that there is a large variation in the length

of videos. The idea of MTS yields the method to achieve
descriptors which are invariant to video length. Table V lists
the accuracy achieved by using different temporal levels on
MSR Action 3D dataset. The accuracy of the case which uses
all three temporal levels is the best. It also shows that using
one or two temporal levels of sampling is not enough.

E. Computational Complexity Analysis

The proposed method is implemented in Matlab 2016a on a
Core i7 740Q system. Table VI shows the percentage of time
spent on each step of the proposed method. Extraction of the
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TABLE V: Performance comparison on MSR Action 3D
dataset with different levels of temporal sampling.

Multilevel temporal sampling Accuracy
Long 93

Long + Short 94.20
Long+Long+Long 93.6

Long+ Middle+ Short 95.24

TABLE VI: Average run-time on all datasets.

Step Run Time (%)
MTS 0.8
HOG 0.9
LBP 0.93

VLAD Encoding 97.37

MTS contains two steps of computing the motion energy for
each frame of a sequence and then sorting them to select the
frames with the highest motion energy. The first part is an
order of O(N) (N is the number of pixels within frame) and
the second part is an order of O(T log(T )) (T is the video
length). Given that in our case T � N , the whole process
of MTS is an order of O(N). Extraction of both LBP and
HOG is an order of O(N). In Table VI, it can be seen that
the three steps of MTS, HOG, and LBP take almost the same
time to compute. The VLAD encoding includes two parts of
creating dictionary of visual words and then assigning each
sample to the visual words. Computing visual words (i.e., k-
means) takes the most part of time with 97.37%. The running
time of k-means (Lloyd’s algorithm) is O(nk) where n is the
whole number of samples of the dataset, and k is the number
of visual words (8 to 128). Assigning samples to the visual
words is an order of the whole number of samples in dataset
O(n).

F. Effect of Combining Different Features

Utilizing the combination of HOG and LBP features im-
proves the accuracy for all three datasets. The histogram of the
second-order gradient (HOG2) [38], gray level co-occurrence
matrix (GLCM) [61], and CNN are also evaluated on MSR
action 3D dataset to compare the accuracy achieved by these
descriptors with other existence descriptors. Figure 10 shows
the accuracy of different combinations of these descriptors. It
can be seen that the combination of HOG and LBP features
outperforms other methods.

V. CONCLUSION

A novel and effective method for human gesture recognition
in sequences of depth maps was proposed. First, three levels
of temporal samples (long, middle, and short) were computed
from the input video to extract videos with high motion
information. Next, each depth video was projected onto three
orthogonal Cartesian views. Those videos were divided into
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Fig. 10: Comparison of different combinations of descriptors.

some shorter clips with overlap and fixed lengths. For each
clip, the proposed WDMM was computed as the accumulated
weighted absolute difference of consecutive frames. The HOG
and LBP descriptors were extracted from all WDMMs. At
the end, the final descriptor was formed by applying the
PCA on the VLAD encoding of extracted features. Then, the
SLFN method with ELM was used as the classifier. It was
shown that MTS yields the method to be robust to different
execution rates of performing gestures, resulting in increasing
the accuracy of the gesture recognition rate. Moreover, the
LBP and HOG and also their combination were evaluated
on four benchmark datasets. For gesture datasets, the LBP
achieved better results and for the action dataset the HOG
outperformed other methods. Finally, the experimental results
showed the efficiency and superiority of the proposed method
when compared to the state-of-the-art methods on the MSR
Gesture 3D, SKIG, and MSR Action 3D datasets. We also
showed competitive results on NTU action dataset. As our
future work, the fusion of skeleton and depth features will
be considered to analyze their complementary impact on
improving the overall recognition performance.
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